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SA@A Multiscale Modeling of Sugar Alcohol Systems

Hierarchy of computational chemical methods

Afoms
Molecular
Elections conformations

Empirical methods:
- Allow large systems

years Bond formation - Rigid connectivity
A
QC methods:
E - Allow reactions
- - Expensive, only
small systems
Simulate bond formation
in larger molecular systems
. Crystallization, nucleation
10-15 Empirical _
ab initio, force fields Thermodynamics and
gl transport properties
Angstrom Kilometres
Distance

Workshop and Onsite Demonstration e CiCenergigune, Spain e March 17/18, 2015



Subatomic Scale Calculations

e First principle quantum mechanical (density functional theory)
calculations

By fitting potential energies

e Force field: a set of interaction rules that governs the atomic
motion
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Molecular Scale Simulations

Atoms move according to Newton’s equations of motion

Van der Waals interaction, electrostatic interaction

Bond stretching, angle bending, dihedral torsion

Typical time step 1fs (10-1°s), box size 10nm

van der Waals

Wa nce

Torsion angle

Bond stretching and angle bending

Erythritol OH

Xylitol OH

HO OH
OH OH

D-Mannitol OH QH

OH
HO

OH OH
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Bridge up to Lattice Scale

Sugar alcohols have much lower crystallization kinetics and
therefore direct simulation becomes unfeasible

A meso-scale model is therefore needed to describe lattice
growth of sugar alcohols.

Key properties that determines nucleation and crystallization
kinetics and morphology:

Bulk free energy of both solid and supercooled liquid state
Anisotropic solid-liquid interfacial free energy

Viscosity, to extract activation energy of viscous flow

Lattice parameters, temperature dependent density

Most properties are easily calculated using modern software
packages with their built-in functions
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Interfacial Free Energy Calculation

Interfacial free energies are calculated using a Wall Cleaving
method.

An artificial wall is generated that guides a layer of liquid molecule
to form a crystalline structure

Use transition state sampling to sum up the free energy difference
between the initial and final state

(a) Crystal (solid) with cleaving potential

/ 7
7 /,
; S 1 ,/; 82 (c) Superposed liquid and SD|Id in pbc rearrangement
7z 7, /7
1 1 7 S1 s S2
A A Position of cleaving potentials 2 X
(b) Melt (liquid) with cleaving potential
t{lq t g potenti ; L 1 11; L 2
7 7/
A A

L1 L2
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Interfacial Free Energy Calculation

e (Cleaving potential is carefully designed to trap all atoms of a
molecule

e After cleaving, a layer of crystalline structure is formed

(a) (b)

repulsive

A Position of Cleaving Potentials

() (d)
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Interfacial Free Energy Calculation

) 12a 2b 2C -
L(100%) —>[ L(30%) H L(30%)+CDH L(100%)+®

Xyl (1 00)
Xyl (01 0)
Xyl (001)
Xyl ISO
Man (100)
Man (01 0)
Man (001)
Man I1SO

4
L+S+OD L+S
S L > S+O
S — ,L—J

e
kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol nm? mJ/m?

-4050.9 -2605.4  -8381.2 -118.5 +7801.2 1029.7 25.9034 66.01
-4050.2 +8325.3 -2944.7 -8288.3 -143.7 +7642.4 612.7 23.8518 42.66
-4070.0 -2940.6  -8270.3 225.5 +8015.7 1172.8 24.0269 81.05
Isotropic approximation with SU hysteresis method ~58
-4950.4 -3676.6 -12724.5 +411.9 +9888.5 1280.6 23.6141  90.05
-3810.5 12537.6 -2788.7 -12686.5 +131.1 +7759.8 1077.3 22.9631 78.24
-3987.6 -2736.4 -12633.0 +127.6 +7533.9 7784  23.3600 55.33
Isotropic approximation with SU hysteresis method ~78
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Two Phase Thermodynamics (2PT)

Of all condensed phases, thermodynamic properties of
(supercooled) liquid state is difficult to calculate

2PT assumes the vibrational density of state of liquid can be
decomposed into a solid-like component and gas-like
component, and so is its thermodynamics properties

Consistent theory in all condensed phases
Converge in 20ps
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sA@A 2PT Idea Sketch: Vibrational Density of State

. Translational

Dtrn (V) —

2

f VE (e 2t

T—00 7—

kxyz;l

 Rotational

2

Dot (v)=

f w (t)e—IZwutdt

123 j=1  ~© 2T

 Vibrational

2 m; T —i27v
Dvib (V) = 2 f vib, j,I (t)e ’ tdt

o Gas-like component

trn (O)V
6 f

-1

trn (V )= Dtrn (0)|1+

trn

14 :
trans
gas component
12} solid component |
10K
T 8
KA
4 - .
TIP4P2005,300K
2 Translational |
00 260 400 600 860 1000
wavenumber [cm-1]
5 T
rot
45 gas component |
solid component
4 L
35
= 3
5
e 25 L
2 L
151
| TIP4P2005,300
05, Rotational\
00 260 460 600 800 1000

wavenumber [cm-1]

Workshop and Onsite Demonstration e CiCenergigune, Spain e March 17/18, 2015



 Harmonic Oscillator:
each vib. mode is treated as Quantum HO
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2PT Idea Sketch: Property Calculation
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An Example of Xylitol

Entropy of xylito ::: I
AS(500K) = 112J/mol/K |
AS(382K) = 82J/mol/K _ |

AS(368K) = 81J/mol/K Bl o S
ASeXp(36752K) = 91.64 J/moI/K ;%3007

Free energy of xylitol -
Intersection at 382 £ 5K. Exp. value 367.52 =

Heatup |
Cool down
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Lattice Growth Model

 Gilmer’s model points out the crystal growth is a stochastic
process of three basic events competing.

 Creation, Annihilation, Surface diffusion

Frequency[Hz]

Creation . :- 7 ” :Jﬁexpi—%@—fp”i—ﬂ

Annihilation_} - k;:ﬂexp:Jr%( _I,p)_zAT(T;}

Diffusion i kpqﬁ[ézexp +%(2+J_g_ip)_2ATﬂ
*base frequency: /, ];—?TGXP{%

G.H. Gilmer and P. Bennema, Journal of applied physics 43, (1972) 1347
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Demonstration: Lattice Growth

t=10us

20
15

10
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Key Parameters

e Surface roughening parameter a (related to interfacial FE)
e Supersaturation B (related to bulk solid liquid FE difference)

10 - 0
m = -

] i

(a) 40 s

B/a =0.30 B/a =0.15 B/a=0.10
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Experimental Evidence

e The key parameter B/a determines the growth pattern which
sugar alcohols follows

Erythritol at Tm-90K, B/a = 0.23, dense branching Xylitol at Tm-10K, B/a =0.10, faceted growth
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Carbon-MASA Systems

e Carbon foams, aerogels, nanotubes, nanoplatelets, ...
 Confinement effects, interfacial effects, doping effects, ...
e Material property modification/ strengthening

e Solvate open-ended 5nm long CNT in xylitol: filling is spontaneous

20 ; ; ‘ 50
18 451+
16} a0}
14}
12}

Z 10+

0 560 ;1 ?'L?s(; 1 5;00 2000 00 560 ;I ?;.s(; 1 560 2000
CNT(10,10), N=3.6/nm CNT(14,14,), N=8.8/nm
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Interfacial effects

50l i 120t 1
I 100 - b
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CNT(10,10), L=5nm,d =1.36 nm CNT(14,14,), L=5nm, d =1.90 nm
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Conclusions and Outlooks

A multiscale model is built up following a hierarchical
approach

e The models are well validated in multiple conditions

e We look forward to research more on carbon-MASA systems
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