

FP7 project - SAM.SSA

Sugar Alcohol based Materials for Seasonal Storage Applications

Workshop and Onsite Demonstration– CiCenergigune

Miñano, Alava, Spain

Sugar alcohols properties and performances

Presented by Alexandre GODIN

Participants:

- CNRS-I2M: M. Duquesne,
 A. Godin, R. Cadoret, E. Palomo
- SOLVAY: J. Daranlot, R.Tadmouri, B. Pavageau
- TU/e: R.M.J van Wissen,
 H. Zhang, S. V. Gaastraa-Nedea

- Screening and selection of sugar alcohols (SA) and sugar alcohol blends (SA-blend)
- Key thermodynamics and physical properties of selected SA and SA-blends
- Undercooling, probability of spontaneous nucleation and crystal growth rates

SCREENING AND SELECTION

Starting point DATA BASE 30 polyols

Mono-, Disaccharide Linear, ramified, cyclic, mix C-atoms: 3 – 12

Including most widely used polyols

UPPER LIMIT Defined by monosaccharide polyols with linear chain

30 SA-based		High temperature - High energy density components			
		Erythritol	D-Mannitol	Dulcitol	Inositol
binary systems	D-Mannitol	X			
have been investigated	Dulcitol	X	X		
	Inositol	X	X	X	
	Glycerol	X	X	Х	X
Looking for either suitable eutectic points or suitable molecular alloys	Xylitol	X	X	X	X
	Adonitol	X	X	X	X
	Sorbitol	X	X	X	X
	Arabitol	X	X	X	X
	Maltitol	x	X	X	X

Phase diagram determination

Fast estimation by infrared thermography (new method)

Differential Scanning Calorimeter (DSC)

Thermodynamic modeling

Most of the systems show eutectic points Those with melting point bellow 100°C have been considered

SELECTED PRODUCTS FOR FURTHER ANALYSIS

Tm : 75°C - 120°C Potential to achieved total energy density by melting around 120 kWh/m3 – 200 kWh/m3

Erythritol Xylitol Adonitol L-Arabitol + Four eutectics Er/Xy (36/64) Ar/Xy (44/56) Ad/Er (70/30) Ar/Er (60/40)

FULL CHARACTERIZATION

LATENT HEAT as high as that of salt hydrates BUT with no problems of separation, segregation and corrosion

Thermal conductivity (solid phase)

In the same range than salt hydrates

Most organic PCMs < 0.2 W/m/K

Thermal conductivity (liquid phase)

Less important than the thermal conductivity in solid

0.36 – 0.46 W/m/K

Comparable to salt hydrates

No significant differences between SA et SA-blends

No significant variation with temperature

Rheology - Viscosity

At low shear rates, the SA and SAblends behave as Newtonian fluids

Measurements at constant shear rate

The viscosity increases rapidly when decreasing temperature and becomes very high in highly undercooled melts

Atoms mobility in the liquid Nucleation rates & crystal growth kinetics

PROBABILITY OF SPONTANEOUS NUCLEATION

Within classical nucleation theory For diffusion-limited crystallization The **nucleation rate** under steady-state conditions is governed by 2 exponential terms

> activation energy regarding the atomic diffusion process

activation energy for the formation of critical nuclei

$$I_{ss}(T) = C \exp\left(+\frac{\Delta G_a(T)}{k_B T}\right) \exp\left(-\frac{\lambda G_a(T)}{k_B T}\right)$$

At high undercooling, this term controls the nucleation

At small undercooling, this term dominates

With increasing undercooling, the nucleation rate first increases until a maximum value and then it decreases

MOREOVER, with increasing influence of the T-dependence of the diffusion term, the maximum value of the nucleation rate is shifted to higher T and it is lower

Erythritol Xylitol Adonitol L-Arabitol Er/Xy (36/64) Ar/Xy (44/56) Ad/Er (70/30) Ar/Er (60/40)

For all the products

(except Erythritol)

The energy barrier for <u>atomic diffusion</u> and <u>conformation changes</u> is so high that the nucleation rate is almost zero. The induction time tends to infinity. The PROBABILITY OF SPONTANEOUS NUCLEATION is negligible.

CRYSTAL GROWTH RATES

In situ experimental analysis by microscopic imaging techniques

Isothermal conditions

OPTICAL MICROSCOPY

MICROSCOPIC IR-THERMOGRAPHY

FACETED DENDRITIC GROWTH

DENSE-BRANCHING MORPHOLOGY

Xylitol

Adonitol

Arabitol

Erythritol

60% Arabitol + 40% Erythritol

64 % Xylitol + 36 % Erythritol

CRYSTAL GROWTH KINETICS

- Growth is controlled by rearrangement processes only at the liquid-solid interface and is therefore interface-controlled
- The rearrangement process involves a diffusive jump (diffusion-limited kinetics) as well as conformation changes for some SA
- The modern form of the Wilson-Frenkel model represents adequately observed crystal growth rates

Wilson-Frenkel model

Ar/Xy (44/56) Ad/Er (70/30) Ar/Er (60/40)

FINAL SELECTION

COMPARED TO WATER

For seasonal storage applications, SA can provide total energy density 4-6 times higher than that of water

Thank you for your attention

